Constructor AgentMemory
AgentMemory(LM)
Initializes a new instance of the AgentMemory class with the specified embedding model.
public AgentMemory(LM embeddingModel)
Parameters
embeddingModelLMThe language model used to generate text embeddings for semantic search. This model should be optimized for embedding generation (e.g., sentence transformers).
Examples
Example: Creating a new agent memory instance
using LMKit.Agents;
using LMKit.Model;
// Load an embedding model (e.g., all-MiniLM-L6-v2)
using var embeddingModel = new LM("path/to/embedding-model.gguf");
// Create the memory store
var memory = new AgentMemory(embeddingModel);
Console.WriteLine($"Memory initialized. Data sources: {memory.DataSources.Count}");
Console.WriteLine($"Is empty: {memory.IsEmpty()}");
Remarks
The embedding model is used both when storing new information (to generate embeddings) and when retrieving information (to embed the query). For consistent results, always use the same embedding model for storage and retrieval.
The memory instance holds a reference to the embedding model but does not dispose it. Ensure the model remains valid for the lifetime of the memory instance.
Exceptions
- ArgumentNullException
Thrown when
embeddingModelisnull.