Table of Contents

Method CreateTrainingObject

Namespace
LMKit.TextAnalysis
Assembly
LM-Kit.NET.dll

CreateTrainingObject(IList<(string, EmotionCategory)>, int)

Creates an object for fine-tuning an emotion detection model using the provided training data.

public LoraFinetuning CreateTrainingObject(IList<(string, EmotionDetection.EmotionCategory)> trainingData, int maxSamples = 1000)

Parameters

trainingData IList<(string, EmotionDetection.EmotionCategory)>

A list of tuples where each tuple contains a text (string) and its corresponding emotion category (EmotionDetection.EmotionCategory).
The text represents the input data, and the emotion category represents the expected output.

maxSamples int

The maximum number of training samples to use. The default value is 1000. If the number of samples in trainingData exceeds this value, only the first maxSamples samples will be used.

Returns

LoraFinetuning

A LoraFinetuning object configured for fine-tuning the emotion detection model with the provided training data.

Exceptions

ArgumentNullException

Thrown if the trainingData argument is null.

ArgumentException

Thrown if the trainingData list is empty, or if any entry in the list is associated with an undefined emotion category.

InvalidModelException

Thrown if fine-tuning is not supported for Embedding classification mode.

CreateTrainingObject(TrainingDataset, int, bool, int?, bool)

Creates a training object for fine-tuning an emotion detection model using a specified dataset.

public LoraFinetuning CreateTrainingObject(EmotionDetection.TrainingDataset dataset, int maxSamples = 1000, bool shuffle = true, int? seed = null, bool neutralSupport = true)

Parameters

dataset EmotionDetection.TrainingDataset

The dataset to be used for training.

maxSamples int

The maximum number of samples to use from the dataset. Default is 1000.

shuffle bool

Indicates whether to shuffle the dataset before selecting samples. Default is true.

seed int?

An optional seed for the random number generator used when shuffling. If null, the shuffle operation will not be seeded.

neutralSupport bool

Specifies whether support for neutral samples should be included. The default is true.

Returns

LoraFinetuning

A LoraFinetuning object configured with the training data.

Exceptions

ArgumentException

Thrown if the dataset is not recognized.

InvalidModelException

Thrown if fine-tuning is not supported for Embedding classification mode.