🚀 Understanding Context Windows (Context Length) for LLMs
📄 TL;DR
A context window is the maximum number of tokens a model can “see” at once (prompt + chat history + recalled memory + tool outputs + the tokens it is currently generating).
In LM-Kit.NET, MultiTurnConversation exposes:
ContextSize: the total token budget for the conversation window. (docs.lm-kit.com)ContextRemainingSpace: how many tokens are still available right now. (docs.lm-kit.com)
You can also:
- Override the context size at construction time (or let LM-Kit pick an optimal size). (docs.lm-kit.com)
- Cap per-turn output with
MaximumCompletionTokens(default2048). (docs.lm-kit.com) - Inject long-term memory via
Memoryand cap it withMaximumRecallTokens. (docs.lm-kit.com) - Choose overflow behaviors using
InferencePolicies(trim, shift KV cache, throw, stop generation). (docs.lm-kit.com)
🧠 What Exactly is a Context Window?
A model does not “read” your whole app or your whole conversation forever. It processes a sliding window of tokens.
Think of it like a desk:
- Everything on the desk is visible to the model.
- Anything that falls off the desk might be forgotten unless you re-inject it (summary, memory recall, retrieval, etc.).
A practical token accounting view:
If ContextUsed > ContextSize, you need a strategy.
LM-Kit explicitly models this in MultiTurnConversation with ContextSize and ContextRemainingSpace. (docs.lm-kit.com)
🛠️ Why Context Windows Matter
Quality and coherence
- Longer context helps keep instructions and earlier details consistent.
- But if the window is full, important instructions may get trimmed out (which looks like “the model forgot”).
Performance and memory
- Larger context usually means more RAM usage and slower inference (KV cache grows with context).
- LM-Kit exposes configuration like KV cache recycling for efficiency in .NET apps. (docs.lm-kit.com)
Agent behavior
- Planning, reflection, tool-calling, and memory recall all consume tokens.
- If you do not budget for these, the “agentic” parts are the first to degrade.
🚧 What Happens When You Hit the Limit?
There are two common overflow problems:
1) Prompt too long (input overflow)
In LM-Kit, this is configurable via InferencePolicies.InputLengthOverflowPolicy. (docs.lm-kit.com)
Options include: (docs.lm-kit.com)
TrimAuto: automatically trims to fitTrimStart: drop earliest tokens (often best for chat, keeps the most recent turns)TrimEnd: drop the latest tokensKVCacheShifting: shift KV cache to accommodate overflowThrow: raiseNotEnoughContextSizeException
2) Context fills up during generation (context overflow)
Controlled by InferencePolicies.ContextOverflowPolicy. (docs.lm-kit.com)
Options include: (docs.lm-kit.com)
KVCacheShifting: shifts cache contents to keep goingStopGeneration: stops and returnsContextSizeLimitExceeded
🔍 Practical Strategies That Actually Work
✅ Budget your output
In MultiTurnConversation, use MaximumCompletionTokens to cap how long the assistant can speak per turn (default 2048). (docs.lm-kit.com)
If you intentionally cap output, you can continue later using ContinueLastAssistantResponseAsync. (docs.lm-kit.com)
✅ Use memory recall instead of stuffing the prompt
LM-Kit supports a long-term memory store:
- Assign
Memory(anAgentMemoryimplementation). (docs.lm-kit.com) - Control its budget with
MaximumRecallTokens(defaults toContextSize / 4, capped toContextSize / 2). (docs.lm-kit.com)
✅ Summarize when the chat grows
LM-Kit includes a Summarizer that can summarize text and also attachments (including PDFs and Microsoft Office formats via Attachment). (docs.lm-kit.com)
It also supports an overflow strategy for overly long inputs, with default RecursiveSummarize. (docs.lm-kit.com)
✅ Persist and resume sessions
MultiTurnConversation can persist and restore full chat sessions (save session to file/bytes, restore from them). (docs.lm-kit.com)
🛠️ Context Window Management in LM-Kit.NET
Example: set context size, budgets, and overflow policies
using LMKit;
using LMKit.TextGeneration;
using LMKit.Inference;
// Optional: performance-oriented global configuration
LMKit.Global.Configuration.EnableKVCacheRecycling = true; // :contentReference[oaicite:19]{index=19}
// Load a local model (ensure tensors/weights are loaded).
var lm = new LM("path/to/model.gguf", new LM.LoadingOptions { LoadTensors = true }); // :contentReference[oaicite:20]{index=20}
// Option A: let LM-Kit pick an optimal context size (contextSize = -1)
// Option B: force a context size (bounded by model limits)
using var chat = new MultiTurnConversation(lm, contextSize: 4096); // :contentReference[oaicite:21]{index=21}
// Set system prompt BEFORE the first user message
chat.SystemPrompt = "You are a concise technical assistant."; // :contentReference[oaicite:22]{index=22}
// Per-turn output budget
chat.MaximumCompletionTokens = 512; // :contentReference[oaicite:23]{index=23}
// Overflow handling policies
chat.InferencePolicies.InputLengthOverflowPolicy = InputLengthOverflowPolicy.TrimStart; // :contentReference[oaicite:24]{index=24}
chat.InferencePolicies.ContextOverflowPolicy = ContextOverflowPolicy.KVCacheShifting; // :contentReference[oaicite:25]{index=25}
Console.WriteLine($"ContextSize: {chat.ContextSize} tokens"); // :contentReference[oaicite:26]{index=26}
Console.WriteLine($"ContextRemainingSpace: {chat.ContextRemainingSpace}"); // :contentReference[oaicite:27]{index=27}
while (true)
{
Console.Write("> ");
var prompt = Console.ReadLine();
if (string.IsNullOrWhiteSpace(prompt)) break;
if (chat.ContextRemainingSpace < 256) // :contentReference[oaicite:28]{index=28}
Console.WriteLine("[Heads up] Context is getting tight. Consider summarizing or saving the session.");
var result = chat.Submit(prompt); // :contentReference[oaicite:29]{index=29}
Console.WriteLine(result.Content);
// If you capped MaximumCompletionTokens and want more, you can explicitly continue:
// var more = await chat.ContinueLastAssistantResponseAsync();
// Console.WriteLine(more.Content);
}
Example: summarizing older content to free space
using LMKit;
using LMKit.TextGeneration;
// Use a summarizer model (example from LM-Kit docs)
var model = LM.LoadFromModelID("lmkit-tasks:4b-preview"); // :contentReference[oaicite:30]{index=30}
var summarizer = new Summarizer(model)
{
GenerateTitle = true,
GenerateContent = true
};
var summary = summarizer.Summarize(longText);
Console.WriteLine("Title: " + summary.Title);
Console.WriteLine("Summary: " + summary.Content); // :contentReference[oaicite:31]{index=31}
You can then inject that summary back into your conversation as a “compressed memory” message (or store it in your AgentMemory implementation), instead of keeping the entire raw history.
📖 Key Terms
- Context Window / Context Length: max tokens visible at once.
- Token Budget: the slice of
ContextSizereserved for each component (history, tools, memory recall, output). - KV Cache: internal attention cache that grows with context; LM-Kit supports overflow policies like KV cache shifting. (docs.lm-kit.com)
- Recall Tokens: tokens injected from long-term memory, capped by
MaximumRecallTokens. (docs.lm-kit.com) - Overflow Policy: what happens when input or generation exceeds the limit. (docs.lm-kit.com)
🔗 Related Glossary Topics
- Token: The units that make up context windows
- KV-Cache: Memory optimization for long contexts
- Attention Mechanism: How context is processed
- AI Agent Memory: Long-term memory beyond context windows
- RAG: Retrieve information without filling context
🌐 External Resources
- LongRoPE (Ding et al., 2024): Extending context to 2M+ tokens
- Ring Attention (Liu et al., 2023): Distributed training for long contexts
- Lost in the Middle (Liu et al., 2023): How models use long contexts
- LM-Kit Chat Demo: Context management in practice