👁️ Understanding Vision Language Models (VLM) in LM-Kit.NET
📄 TL;DR
Vision Language Models (VLMs) are multimodal AI systems that can process and understand both images and text simultaneously. Unlike text-only LLMs, VLMs can analyze photographs, documents, charts, and screenshots while maintaining full conversational capabilities. In LM-Kit.NET, VLM support enables image-based chat, document understanding, visual question answering, and OCR through vision via the VlmOcr class and vision-capable models like Qwen2-VL and Gemma3-VL, all running locally on-device.
📚 What are Vision Language Models?
Definition: Vision Language Models are neural networks trained to understand both visual and textual information, enabling them to:
- Describe images in natural language
- Answer questions about visual content
- Extract text from images (OCR)
- Analyze documents with complex layouts
- Reason about charts, diagrams, and screenshots
The Multimodal Architecture
+--------------------------------------------------------------------------+
| Vision Language Model Architecture |
+--------------------------------------------------------------------------+
| |
| +-----------------+ +-----------------+ |
| | Image Input | | Text Input | |
| | | | | |
| | +-----------+ | | "What is in | |
| | | | | | this image?" | |
| | | [IMG] | | | | |
| | | | | | | |
| | +-----------+ | +--------┬--------+ |
| +--------┬--------+ | |
| | | |
| v v |
| +-----------------+ +-----------------+ |
| | Vision Encoder | | Text Tokenizer | |
| | (ViT / SigLIP) | | | |
| +--------┬--------+ +--------┬--------+ |
| | | |
| +----------------┬-----------------------+ |
| | |
| v |
| +-----------------+ |
| | Fusion Layer | |
| | (Cross-Attention| |
| | or Projection) | |
| +--------┬--------+ |
| | |
| v |
| +-----------------+ |
| | Language Model | |
| | (Transformer) | |
| +--------┬--------+ |
| | |
| v |
| +-----------------+ |
| | Text Output | |
| | "A cat sitting | |
| | on a couch..." | |
| +-----------------+ |
| |
+--------------------------------------------------------------------------+
VLM vs Text-Only LLM
| Capability | Text-Only LLM | Vision Language Model |
|---|---|---|
| Text understanding | Yes | Yes |
| Image analysis | No | Yes |
| Document OCR | No | Yes |
| Chart interpretation | No | Yes |
| Screenshot analysis | No | Yes |
| Visual Q&A | No | Yes |
| Multimodal reasoning | No | Yes |
🏗️ VLM Capabilities in LM-Kit.NET
Supported Vision Models
LM-Kit.NET supports several vision-capable model families:
| Model Family | Model IDs | Strengths |
|---|---|---|
| Qwen2-VL | qwen2-vl:2b, qwen2-vl:7b |
Excellent document understanding, multilingual |
| Gemma3-VL | gemma3:4b, gemma3:12b, gemma3:27b |
Strong reasoning, visual Q&A |
Core VLM Operations
+--------------------------------------------------------------------------+
| LM-Kit.NET VLM Capabilities |
+--------------------------------------------------------------------------+
| |
| +-----------------+ +-----------------+ +-----------------+ |
| | VlmOcr | | Visual Chat | | TextExtraction | |
| | | | | | (Vision Mode) | |
| | • Text from | | • Image Q&A | | | |
| | images | | • Description | | • Structured | |
| | • Layout-aware | | • Analysis | | extraction | |
| | • Handwriting | | • Comparison | | • Schema-based | |
| +-----------------+ +-----------------+ +-----------------+ |
| |
| +-----------------+ +-----------------+ +-----------------+ |
| | Categorization | | LayoutAnalysis | | Agent Vision | |
| | (Image Input) | | | | | |
| | | | • Document | | • Tool-assisted| |
| | • Image class | | structure | | image tasks | |
| | • Document type| | • Region | | • Multimodal | |
| | • Scene detect | | detection | | workflows | |
| +-----------------+ +-----------------+ +-----------------+ |
| |
+--------------------------------------------------------------------------+
⚙️ Using VLMs in LM-Kit.NET
Basic Image Understanding
using LMKit.Model;
using LMKit.TextGeneration;
using LMKit.Graphics;
// Load a vision-capable model
var model = LM.LoadFromModelID("qwen2-vl:7b");
// Create chat instance
var chat = new MultiTurnConversation(model);
// Load image
var image = ImageData.FromFile("product_photo.jpg");
// Ask about the image
var response = chat.Submit(
"Describe this product in detail. What are its key features?",
image,
CancellationToken.None
);
Console.WriteLine(response);
Vision-Based OCR
using LMKit.Model;
using LMKit.Graphics;
var model = LM.LoadFromModelID("gemma3:12b");
// Create VLM-based OCR
var vlmOcr = new VlmOcr(model);
// Extract text from scanned document
var result = vlmOcr.Execute(
ImageData.FromFile("scanned_invoice.png"),
CancellationToken.None
);
Console.WriteLine(result.Text);
// Preserves layout and structure from the original document
Structured Extraction from Images
using LMKit.Model;
using LMKit.Extraction;
using LMKit.Data;
var model = LM.LoadFromModelID("qwen2-vl:7b");
var extractor = new TextExtraction(model);
// Define schema for invoice extraction
extractor.Elements.Add(new TextExtractionElement("vendor", ElementType.String)
{
Description = "Company name of the vendor"
});
extractor.Elements.Add(new TextExtractionElement("total", ElementType.Double)
{
Description = "Total amount due"
});
extractor.Elements.Add(new TextExtractionElement("date", ElementType.Date)
{
Description = "Invoice date"
});
// Extract from image using vision
extractor.SetContent(new Attachment("invoice_scan.jpg"));
extractor.PreferredInferenceModality = InferenceModality.Vision;
var result = extractor.Parse(CancellationToken.None);
Console.WriteLine(result.Json);
Document Classification with Vision
using LMKit.Model;
using LMKit.TextAnalysis;
using LMKit.Data;
var model = LM.LoadFromModelID("gemma3:4b");
var categorizer = new Categorization(model);
categorizer.Categories.Add("Invoice");
categorizer.Categories.Add("Contract");
categorizer.Categories.Add("Resume");
categorizer.Categories.Add("Receipt");
categorizer.Categories.Add("ID Document");
// Classify scanned document by visual appearance
categorizer.SetContent(new Attachment("unknown_document.pdf"));
var result = categorizer.Categorize(CancellationToken.None);
Console.WriteLine($"Document type: {result.Category} ({result.Confidence:P1})");
Multi-Image Comparison
using LMKit.Model;
using LMKit.TextGeneration;
using LMKit.Graphics;
var model = LM.LoadFromModelID("qwen2-vl:7b");
var chat = new MultiTurnConversation(model);
// Load multiple images
var images = new[]
{
ImageData.FromFile("product_v1.jpg"),
ImageData.FromFile("product_v2.jpg")
};
// Compare images
var response = chat.Submit(
"Compare these two product images. What are the differences?",
images,
CancellationToken.None
);
Console.WriteLine(response);
🎯 VLM Use Cases
1. Document Intelligence
Process scanned documents, PDFs, and images to extract structured data:
- Invoice processing: Extract vendor, amounts, line items from scanned invoices
- Form parsing: Read filled forms and convert to structured data
- Receipt scanning: Capture expense data from photos of receipts
- ID verification: Extract information from identity documents
2. Visual Question Answering
Enable conversational interaction with images:
- Product analysis: Describe features, identify defects, compare variants
- Technical support: Analyze screenshots, identify UI elements, guide users
- Medical imaging: Describe findings (with appropriate disclaimers)
- Real estate: Analyze property photos, describe features
3. Content Moderation
Automatically analyze visual content:
- Safety screening: Detect inappropriate or harmful content
- Brand compliance: Verify visual assets meet brand guidelines
- Quality control: Identify defects in product images
4. Accessibility
Generate descriptions for visual content:
- Alt text generation: Create image descriptions for accessibility
- Scene description: Describe visual content for visually impaired users
- Chart interpretation: Convert visual data to textual summaries
📊 Inference Modalities
LM-Kit.NET supports three inference modalities for flexible content processing:
| Modality | Description | Best For |
|---|---|---|
| Text | Text-only processing | Pure text documents, chat |
| Vision | Image-focused with VLM | Scanned documents, photos |
| Multimodal | Combined text and vision | Mixed content, PDFs with images |
// Let LM-Kit choose the best modality automatically
extractor.PreferredInferenceModality = InferenceModality.Multimodal;
// Or force vision mode for image-heavy content
extractor.PreferredInferenceModality = InferenceModality.Vision;
// Or use text-only for better performance on text documents
extractor.PreferredInferenceModality = InferenceModality.Text;
📖 Key Terms
- Vision Language Model (VLM): A multimodal model that processes both images and text
- Vision Encoder: The component that converts images into embeddings (e.g., ViT, SigLIP)
- Cross-Attention: Mechanism allowing text tokens to attend to image features
- Visual Q&A: Task of answering questions about image content
- Multimodal: Systems that process multiple types of input (text, images, audio)
- Inference Modality: The type of content processing mode (text, vision, multimodal)
📚 Related API Documentation
VlmOcr: Vision-based OCRImageData: Image input handlingAttachment: Universal document inputInferenceModality: Processing mode selectionMultiTurnConversation: Multimodal chat
🔗 Related Glossary Topics
- Intelligent Document Processing (IDP): End-to-end document automation
- Structured Data Extraction: Schema-based extraction from images
- AI Agents: Agents with vision capabilities
- Embeddings: Vector representations including image embeddings
- Attention Mechanism: Core of vision-language fusion
🌐 External Resources
- LLaVA (Liu et al., 2023): Visual Instruction Tuning
- Qwen-VL (Bai et al., 2023): Versatile Vision-Language Model
- PaLI (Chen et al., 2022): Pathways Language and Image model
- LM-Kit VLM Demo: Multimodal chat example
📝 Summary
Vision Language Models (VLMs) extend traditional language models with the ability to see and understand images, enabling powerful multimodal applications. In LM-Kit.NET, VLM support includes vision-based OCR (VlmOcr), visual chat (image Q&A), structured extraction from images, and document classification. Models like Qwen2-VL and Gemma3 provide strong vision capabilities that integrate seamlessly with LM-Kit's text processing features. By selecting the appropriate inference modality (Text, Vision, or Multimodal), developers can optimize for different content types. VLMs enable document intelligence, visual Q&A, content moderation, and accessibility applications, all running locally on-device for maximum privacy and performance.