📄 Understanding Intelligent Document Processing (IDP) in LM-Kit.NET
📄 TL;DR
Intelligent Document Processing (IDP) is an AI-powered approach to automatically capturing, classifying, extracting, and validating information from documents. Unlike traditional OCR or template-based systems, IDP uses language models, computer vision, and semantic understanding to process diverse document types with human-like comprehension. In LM-Kit.NET, IDP capabilities span document ingestion, layout analysis, text extraction, structured data extraction, and classification, all running locally for maximum privacy and performance.
📚 What is Intelligent Document Processing?
Definition: Intelligent Document Processing (IDP) is an umbrella term for technologies that automate the end-to-end understanding of documents, from raw files (PDFs, images, Office documents) to actionable, structured data. IDP combines multiple AI disciplines:
- Computer Vision for layout detection and visual understanding
- Optical Character Recognition (OCR) for text extraction from images
- Natural Language Processing (NLP) for semantic interpretation
- Machine Learning for classification and validation
The IDP Pipeline
+-----------------------------------------------------------------------------------+
| Intelligent Document Processing Pipeline |
+-----------------------------------------------------------------------------------+
| |
| +----------+ +----------+ +----------+ +----------+ +----------+ |
| | Capture | | Classify | | Extract | | Validate | | Integrate| |
| | |--->| | --->| |--->| |--->| | |
| | • PDF | | • Type | | • Fields | | • Rules | | • APIs | |
| | • Image | | • Intent | | • Tables | | • Logic | | • DBs | |
| | • Office | | • Route | | • Layout | | • Review | | • Apps | |
| +----------+ +----------+ +----------+ +----------+ +----------+ |
| |
+-----------------------------------------------------------------------------------+
IDP vs Traditional Document Processing
| Aspect | Traditional (OCR + Templates) | Intelligent Document Processing |
|---|---|---|
| Document Variety | Requires template per format | Handles diverse, unseen formats |
| Layout Changes | Breaks with format changes | Adapts to layout variations |
| Understanding | Pattern matching only | Semantic comprehension |
| Accuracy | High for known templates | High across document types |
| Maintenance | Template updates needed | Self-adapting models |
| Complex Documents | Struggles with tables, forms | Understands structure |
🔍 The Five Stages of IDP
1. Document Capture & Ingestion
The entry point: accepting documents in various formats and preparing them for processing.
Supported Formats:
- PDF Documents: Native text extraction or OCR for scanned PDFs
- Images: JPEG, PNG, TIFF, BMP with automatic OCR
- Office Documents: Word (.docx), Excel (.xlsx), PowerPoint (.pptx)
- HTML/Web Content: Structured markup with embedded content
2. Document Classification
Automatically determining document type, intent, and routing:
- Type Classification: Invoice, contract, resume, form, report
- Intent Detection: Payment request, complaint, inquiry, order
- Language Identification: Automatic language detection for multilingual processing
- Quality Assessment: Evaluating document quality for processing confidence
3. Information Extraction
The core IDP function: pulling structured data from unstructured content:
- Key-Value Extraction: Finding specific fields (invoice number, date, amount)
- Table Extraction: Recognizing and parsing tabular data
- Entity Recognition: Identifying people, organizations, locations, dates
- Relationship Extraction: Understanding connections between entities
4. Validation & Verification
Ensuring extracted data meets quality and business rules:
- Format Validation: Dates, numbers, identifiers match expected patterns
- Cross-Field Validation: Related fields are consistent (subtotals match total)
- Business Rules: Domain-specific logic and constraints
- Confidence Scoring: Flagging low-confidence extractions for review
5. Integration & Action
Delivering processed data to downstream systems:
- API Integration: RESTful services, webhooks
- Database Storage: Structured records in SQL/NoSQL databases
- Workflow Triggers: Initiating business processes
- Human-in-the-Loop: Routing exceptions for manual review
⚙️ How LM-Kit.NET Implements IDP
LM-Kit.NET provides a comprehensive toolkit for building IDP solutions through several integrated components:
Core Architecture
+--------------------------------------------------------------------------+
| LM-Kit.NET IDP Architecture |
+--------------------------------------------------------------------------+
| |
| +---------------------------------------------------------------------+ |
| | Document Ingestion | |
| | Attachment • PdfDocument • OfficeDocument • ImageData | |
| +---------------------------------------------------------------------+ |
| | |
| v |
| +---------------------------------------------------------------------+ |
| | Pre-Processing Layer | |
| | VlmOcr • LayoutAnalysis • DocumentSplitting • TextChunker | |
| +---------------------------------------------------------------------+ |
| | |
| v |
| +---------------------------------------------------------------------+ |
| | Understanding Layer | |
| | Categorization • LanguageDetection • SentimentAnalysis | |
| +---------------------------------------------------------------------+ |
| | |
| v |
| +---------------------------------------------------------------------+ |
| | Extraction Layer | |
| | TextExtraction • NamedEntityRecognition • PiiExtraction | |
| +---------------------------------------------------------------------+ |
| |
+--------------------------------------------------------------------------+
Document Ingestion
using LMKit.Data;
using LMKit.Document;
// Universal attachment for any document type
var attachment = new Attachment("invoice.pdf");
// Or specific document types for more control
var pdfDoc = new PdfDocument("contract.pdf");
var officeDoc = new OfficeDocument("report.docx");
// Image ingestion with vision capabilities
var imageData = ImageData.FromFile("scanned_form.png");
OCR and Text Recognition
using LMKit.Graphics;
using LMKit.Model;
// Load a vision-capable model
var model = LM.LoadFromModelID("gemma3:4b");
// Create vision-based OCR
var vlmOcr = new VlmOcr(model);
// Extract text from scanned document
var ocrResult = vlmOcr.Execute(
ImageData.FromFile("scanned_invoice.png"),
CancellationToken.None
);
Console.WriteLine(ocrResult.Text);
Layout Analysis
using LMKit.Document;
using LMKit.Model;
var model = LM.LoadFromModelID("gemma3:12b");
// Analyze document structure
var layoutAnalyzer = new LayoutAnalysis(model);
layoutAnalyzer.SetContent(new Attachment("complex_form.pdf"));
var layout = layoutAnalyzer.Analyze(CancellationToken.None);
// Access detected regions
foreach (var region in layout.Regions)
{
Console.WriteLine($"Type: {region.Type}, Bounds: {region.Bounds}");
Console.WriteLine($"Content: {region.Text}");
}
Document Classification
using LMKit.TextAnalysis;
using LMKit.Model;
var model = LM.LoadFromModelID("gemma3:4b");
// Classify document type
var categorizer = new Categorization(model);
categorizer.Categories.Add("Invoice");
categorizer.Categories.Add("Contract");
categorizer.Categories.Add("Resume");
categorizer.Categories.Add("Report");
categorizer.Categories.Add("Form");
categorizer.SetContent(new Attachment("unknown_document.pdf"));
var result = categorizer.Categorize(CancellationToken.None);
Console.WriteLine($"Document type: {result.Category} ({result.Confidence:P1})");
Structured Data Extraction
using LMKit.Extraction;
using LMKit.Model;
var model = LM.LoadFromModelID("gemma3:12b");
var extractor = new TextExtraction(model);
// Define extraction schema
extractor.Elements.Add(new TextExtractionElement("vendor_name", ElementType.String)
{
Description = "Company name of the vendor/supplier"
});
extractor.Elements.Add(new TextExtractionElement("invoice_date", ElementType.Date)
{
Description = "Date the invoice was issued"
});
extractor.Elements.Add(new TextExtractionElement("line_items", ElementType.ObjectArray)
{
Description = "Individual items on the invoice",
InnerElements = new List<TextExtractionElement>
{
new("description", ElementType.String),
new("quantity", ElementType.Integer),
new("unit_price", ElementType.Double),
new("amount", ElementType.Double)
}
});
extractor.Elements.Add(new TextExtractionElement("total_amount", ElementType.Double)
{
Description = "Total amount due",
IsRequired = true
});
// Process document
extractor.SetContent(new Attachment("invoice.pdf"));
var result = extractor.Parse(CancellationToken.None);
Console.WriteLine(result.Json);
Entity Recognition
using LMKit.TextAnalysis;
var model = LM.LoadFromModelID("gemma3:4b");
var ner = new NamedEntityRecognition(model);
ner.SetContent(new Attachment("contract.pdf"));
var entities = ner.Extract(CancellationToken.None);
foreach (var entity in entities.Entities)
{
Console.WriteLine($"{entity.Type}: {entity.Text} (confidence: {entity.Confidence:P1})");
}
// Output:
// ORGANIZATION: Acme Corporation (confidence: 98.5%)
// PERSON: John Smith (confidence: 97.2%)
// DATE: January 15, 2024 (confidence: 99.1%)
// MONEY: $50,000 (confidence: 96.8%)
Document Splitting
using LMKit.Extraction;
using LMKit.Model;
// Load a vision-capable model
var model = LM.LoadFromModelID("qwen3-vl:8b");
// Create a document splitter
var splitter = new DocumentSplitting(model)
{
Guidance = "The file contains a mix of invoices and purchase orders."
};
// Detect logical document boundaries
var result = splitter.Split(new Attachment("scanned_batch.pdf"));
Console.WriteLine($"Found {result.DocumentCount} document(s) (confidence: {result.Confidence:P0})");
foreach (var segment in result.Segments)
{
Console.WriteLine($" Pages {segment.StartPage}-{segment.EndPage}: {segment.Label}");
}
🎯 IDP Use Cases
1. Invoice Processing
Automate accounts payable by extracting vendor info, line items, totals, and payment terms from invoices in any format.
2. Contract Analysis
Extract key clauses, parties, dates, obligations, and terms from legal agreements for compliance and risk management.
3. Claims Processing
Parse insurance claims, medical records, and supporting documents to accelerate adjudication.
4. HR Document Processing
Process resumes, applications, and employee documents for hiring, onboarding, and compliance.
5. Loan & Mortgage Processing
Extract borrower information, financial data, and property details from complex mortgage packages.
6. Healthcare Records
Parse patient records, lab results, and clinical notes while maintaining HIPAA compliance with local processing.
7. Mailroom and Batch Scanning
Split multi-page scanned PDFs into individual logical documents (invoices, contracts, ID cards) using vision-based boundary detection, then route each document to the appropriate processing pipeline.
📖 Key Terms
- Document Capture: The process of acquiring documents from various sources (scanners, email, uploads)
- Document Splitting: Detecting logical document boundaries within multi-page files using vision models, returning page ranges and labels for each document
- Layout Analysis: Detecting and understanding the visual structure of a document (headers, paragraphs, tables)
- OCR (Optical Character Recognition): Converting images of text into machine-readable characters
- Entity Extraction: Identifying and classifying named entities (people, organizations, dates, amounts)
- Schema: A predefined structure defining what fields to extract and their data types
- Confidence Score: A measure of the model's certainty about an extraction or classification
- Human-in-the-Loop (HITL): A workflow pattern where low-confidence results are routed for human review
📚 Related API Documentation
Attachment: Universal document inputPdfDocument: PDF processingPdfSplitter: Physical PDF splitting by page rangesPdfMerger: PDF mergingVlmOcr: Vision-based OCRLayoutAnalysis: Document structure detectionDocumentSplitting: Logical document boundary detectionTextExtraction: Structured data extractionCategorization: Document classificationNamedEntityRecognition: Entity extractionLanguageDetection: Automatic language identificationBuiltInTools: 9 built-in Document tools for agent-driven PDF and image processing
🔗 Related Glossary Topics
- Structured Data Extraction: Schema-based field extraction
- Named Entity Recognition (NER): Entity identification and classification
- RAG (Retrieval-Augmented Generation): Combining document knowledge with generation
- Embeddings: Semantic document representations
- AI Agents: Autonomous document processing workflows
🌐 External Resources
- DocAI Survey (Borchmann et al., 2023): Comprehensive survey of document AI
- LayoutLM (Xu et al., 2020): Pre-training for document image understanding
- DONUT (Kim et al., 2022): Document Understanding Transformer
- LM-Kit Invoice Extraction Demo: Real-world invoice IDP example
- LM-Kit Document Splitting Demo: Vision-based multi-document PDF splitting example
📝 Summary
Intelligent Document Processing (IDP) represents the evolution from simple OCR to comprehensive document understanding. By combining computer vision, OCR, NLP, and language models, IDP systems can capture, classify, extract, validate, and integrate document data with minimal human intervention. In LM-Kit.NET, IDP capabilities span the entire pipeline: from document ingestion through document splitting, layout analysis, classification, entity recognition, and structured extraction, all running locally on-device. This enables enterprises to automate document-heavy workflows while maintaining data privacy, regulatory compliance, and operational efficiency.